Multiplex mapping of chromatin accessibility and DNA methylation within targeted single molecules identifies epigenetic heterogeneity in neural stem cells and glioblastoma.
نویسندگان
چکیده
Human tumors are comprised of heterogeneous cell populations that display diverse molecular and phenotypic features. To examine the extent to which epigenetic differences contribute to intratumoral cellular heterogeneity, we have developed a high-throughput method, termed MAPit-patch. The method uses multiplexed amplification of targeted sequences from submicrogram quantities of genomic DNA followed by next generation bisulfite sequencing. This provides highly scalable and simultaneous mapping of chromatin accessibility and DNA methylation on single molecules at high resolution. Long sequencing reads from targeted regions maintain the structural integrity of epigenetic information and provide substantial depth of coverage, detecting for the first time minority subpopulations of epigenetic configurations formerly obscured by existing genome-wide and population-ensemble methodologies. Analyzing a cohort of 71 promoters of genes with exons commonly mutated in cancer, MAPit-patch uncovered several differentially accessible and methylated promoters that are associated with altered gene expression between neural stem cell (NSC) and glioblastoma (GBM) cell populations. In addition, considering each promoter individually, substantial epigenetic heterogeneity was observed across the sequenced molecules, indicating the presence of epigenetically distinct cellular subpopulations. At the divergent MLH1/EPM2AIP1 promoter, a locus with three well-defined, nucleosome-depleted regions (NDRs), a fraction of promoter copies with inaccessible chromatin was detected and enriched upon selection of temozolomide-tolerant GBM cells. These results illustrate the biological relevance of epigenetically distinct subpopulations that in part underlie the phenotypic heterogeneity of tumor cell populations. Furthermore, these findings show that alterations in chromatin accessibility without accompanying changes in DNA methylation may constitute a novel class of epigenetic biomarker.
منابع مشابه
Post-translational changes of histones, methylation level, and ERβ protein level in the cumulus cell genome of infertile women with endometriosis
Background: Endometriosis (which affects up to 50% of infertile women) is one of the major causes impacting female infertility. Endometriosis, defined as the presence of endometrial glands and stroma outside the uterine tissue, causes a wide range of functional disorders in the process of follicular development and changes in the follicular milieu, resulting in the formation of an incompetent o...
متن کاملEvaluation of Changes in Global DNA Methylation during Osteoblastic Differentiation of Mesenchymal Stem Cells: A Laboratory Study
Background and Objectives: Control processes in osteoblastic differentiation of mesenchymal stem cells are not yet fully understood. Epigenetic mechanisms, especially the methylation of CpG Islands in the promoter of genes, are considered as one of the most important control mechanisms in stem cell differentiation. In the process of differentiation, it is debated whether only the methylation of...
متن کاملFunction Shapes Content: DNA-Methylation Marker Genes and their Impact for Molecular Mechanisms of Glioma
Glioma is a clinically and biologically diverse disease. It challenges diagnosis and prognosis due to its molecular heterogeneity and diverse regimes of biological dysfunctions which are driven by genetic and epigenetic mechanisms. We discover the functional impact of sets of DNA methylation marker genes in the context of brain cancer subtypes as an exemplary approach how bioinformatics and par...
متن کاملElevated FOXG1 and SOX2 in glioblastoma enforces neural stem cell identity through transcriptional control of cell cycle and epigenetic regulators.
Glioblastoma multiforme (GBM) is an aggressive brain tumor driven by cells with hallmarks of neural stem (NS) cells. GBM stem cells frequently express high levels of the transcription factors FOXG1 and SOX2. Here we show that increased expression of these factors restricts astrocyte differentiation and can trigger dedifferentiation to a proliferative NS cell state. Transcriptional targets inclu...
متن کاملمکانیسمهای اپیژنتیک و نقش آنها در بروز و درمان سرطان: مطالعه مروری
Both genetic and epigenetic changes are effective in cancer incidence and development. . .Epigenetic processes are alternations of DNA and histones conformations, chromatin remodeling, DNA methylation, post-translational modifications of histones and microRNAs patterns which are associated with genes expression or inhibition of them in cells. Some of reversible epigenetic changes such as DNA an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genome research
دوره 24 2 شماره
صفحات -
تاریخ انتشار 2014